ATOMTV:
Protein Data Bank Atomic Coordinate Viewer

E. Anthony T. Allen

University of Tennessee
Knoxville
The Protein Data Bank (PDB)

- "An archive of experimentally determined three-dimensional structures of biological macromolecules that serves a global community of researchers, educators, and students."

"Protein Data Bank Contents Guide, Atomic Coordinate Entry Format Description Version 3.2, Document Published by the wwPDB. See www.wwpdb.org"
Records

- Header
- Title
- ATOM
Provides information about molecule such as short title, date uploaded to data bank and id number.
The ATOM records present the atomic coordinates for standard amino acids and nucleotides.
ATOM Record Format

- **Record Format**

<table>
<thead>
<tr>
<th>COLUMNS</th>
<th>DATA TYPE</th>
<th>FIELD</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 6</td>
<td>Record name</td>
<td>"ATOM "</td>
<td></td>
</tr>
<tr>
<td>7 - 11</td>
<td>Integer</td>
<td>serial</td>
<td>Atom serial number.</td>
</tr>
<tr>
<td>13 – 16</td>
<td>Atom</td>
<td>name</td>
<td>Atom name.</td>
</tr>
<tr>
<td>17</td>
<td>Character</td>
<td>altLoc</td>
<td>Alternate location indicator.</td>
</tr>
<tr>
<td>18 – 20</td>
<td>Residue name</td>
<td>resName</td>
<td>Residue name.</td>
</tr>
<tr>
<td>22</td>
<td>Character</td>
<td>chainID</td>
<td>Chain identifier.</td>
</tr>
<tr>
<td>23 – 26</td>
<td>Integer</td>
<td>resSeq</td>
<td>Residue sequence number.</td>
</tr>
<tr>
<td>27</td>
<td>AChar</td>
<td>iCode</td>
<td>Code for insertion of residues.</td>
</tr>
<tr>
<td>31 – 38</td>
<td>Real(8.3)</td>
<td>x</td>
<td>Orthogonal coordinates for X in Angstroms.</td>
</tr>
<tr>
<td>39 – 46</td>
<td>Real(8.3)</td>
<td>y</td>
<td>Orthogonal coordinates for Y in Angstroms.</td>
</tr>
<tr>
<td>47 – 54</td>
<td>Real(8.3)</td>
<td>z</td>
<td>Orthogonal coordinates for Z in Angstroms.</td>
</tr>
<tr>
<td>55 – 60</td>
<td>Real(6.2)</td>
<td>occupancy</td>
<td>Occupancy.</td>
</tr>
<tr>
<td>61 – 66</td>
<td>Real(6.2)</td>
<td>tempFactor</td>
<td>Temperature factor.</td>
</tr>
<tr>
<td>77 – 78</td>
<td>LString(2)</td>
<td>element</td>
<td>Element symbol, right-justified.</td>
</tr>
<tr>
<td>79 – 80</td>
<td>LString(2)</td>
<td>charge</td>
<td>Charge on the atom.</td>
</tr>
</tbody>
</table>
main(){
 drawDisk
 createDisk
 DiskFilters
 writePPM
 initPGMCanvasbuf
}
main(){

Animate::animateIT

Animate::Read

x_Rotate::
x_Rotate

y_Rotate::
y_Rotate

Animate::getDiskFile

Animate::getIncrementofRotations

Animate::x_RotationCalculations

Animate::y_RotationCalculations

Animate::x_RotationCalculations

Animate::x_RotationCalculations

Animate::getAxisOfRotation

Animate::Write

Animate::getAxisOfRotation

Animate::getIncrementofRotations
Animate::x_RotationCalculations

Rotation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Rx</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>cos</td>
<td>-sin</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>sin</td>
<td>-cos</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

Code

- $y = y \cdot \cos - z \cdot \sin$
- $z = y \cdot \sin + z \cdot \cos$

Rotation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Ry</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cos</td>
<td>0</td>
<td>sin</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-sin</td>
<td>0</td>
<td>-cos</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

Code

- $x = x \cdot \cos + z \cdot \sin$
- $z = -x \cdot \sin + z \cdot \cos$
fetch[LOC|PDB].csh

- Awk
 - Preprocessing of
 - Title
 - Header
 - Disk Description file records
 - "disk \{x xv y yv z zv size ele ele filter quad operation over\}\", size, color
 - "disk \{x xv y yv z zv size sv ele filter quad operation over \}\", color
 - "disk \{x xv y yv z zv size sv r rv g gv b bv filter quad operation over \}\"
 - Legend
AWK Preprocessing

Awk

- **Disk Description file records (size and radii)**
 - cat $repos_Dir"_Sorted" | awk '{printf "disk {x %.3f y %.3f z %.3f size %s %s filter quad operation over}\n", $1,$2,$3,$4,$4 }' > $repos_Dir"_tmpdF"
 - awk 'NR == FNR {a[$1] = "r "$3 " g "$4 " b "$5; next} {$10 = a[$10]1' $misc_Dir"elementColors.txt"
 - $repos_Dir"_tmpdF" > $repos_Dir"_diskFileTmp"
 - awk 'NR == FNR {b[$1] = $6; next} {$9 = b[$9]1' $misc_Dir"elementColors.txt" $repos_Dir"_diskFileTmp" > $repos_Dir"_diskFile"

- **Legend**
 - #Make a legend by eliminating duplicate element names from $repos_Dir"_tmpdF"
 #Based on last field. http://unstableme.blogspot.com/2008/03/remove-duplicates-based-on-fields-awk.html

 awk '!
x[$10]++ {printf "%s\n",$10}' $repos_Dir"_tmpdF" > $repos_Dir"_NoDup"
 - #Make color each element for legend

 awk 'NR == FNR {a[$1] = "#"$2 " $1 " ; next} {$1 = a[$1]1' $misc_Dir"elementColors.txt"
 $repos_Dir"_NoDup" > $repos_Dir"_Legend"
SW Design Summary

- **PHP**
 - Driver – Makes execute call to C, C++, AWK, Imagemagick

- **C++**
 - X, Y Rotations

- **C**
 - Draws disk using disk description file

- **AWK, csh**
 - Preprocessing
 - Disk description files, heading, legend, sorts
 - Uses associative array for elements’ colors and sizes

- **Imagemagick**
 - Sizes Image, convert ppms to animated gif of X, Y rotations

- **JavaScript, HTML**
 - Client Presentation
Protein Data Banks

<table>
<thead>
<tr>
<th>URL</th>
<th>PDB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Viewing Mode

- **Gif**
- **Video**
Going LIVE!

Atomic Coordinate Viewer